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Overview 

  In the visual world, objects are often obscured or 
occluded by intervening objects, resulting in fragmented 
boundaries and a loss of shape information.   

  One advantage of generative models is that they can 
fill in missing data based upon partial observation.  In 
the context of our problem, this means that the missing 
portion of the boundary can be estimated.  This is the 
problem of shape completion. 

  We will evaluate our models by occluding a contiguous 
10% portion of an object boundary, and then using our 
models to estimate these missing data.   
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Dataset 

  The dataset is drawn from the Hemera database of 150,000 blue-screened photo-
objects.   

  From these I have selected 350 animal objects and randomly partitioned them into 
training and test datasets of 175 objects each.   

  The boundary of each object has been down-sampled to a vector of  D =128 
points. Each point of a shape is a 2D Euclidean coordinate.  We represent this as a 
complex number x + iy .  The data and code I provide uses this representation.   

  Each shape has been normalized to a unit circle using a Procrustes transformation.  
This means: 
  There is a 1:1 correspondence between the 128-element vectors representing each shape, 

which facilitates analysis. 

  The expected position of a point on a shape is given by the corresponding point on the 
unit circle:  

  You can access the training dataset now from the course website.  

  
E xi ,yi( )⎡⎣ ⎤⎦ = cosθ i ,sinθ i( ),  where θ i =

2π i
D
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Animal Objects 
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Polygon Approximations 
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Shape Models 

  I have provided code for 3 models.  You will invent 
more. 
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Shape Model 1 

  This is a very simple generative model that assumes 
shape vectors are drawn from an isotropic multivariate 
normal distribution.  (In other words the covariance 
matrix is a diagonal matrix with a constant diagonal.)  
There is a single scalar parameter:  the variance. 

  Functions: 
  ShapeModel1ML.m - computes maximum likelihood estimate 

of the parameter 
  ShapeModel1Sample.m - generates and displays random 

samples from the model 
  ShapeModel1Complete.m - estimates missing portion of a 

given shape 
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Shape Model 1 Samples 
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Shape Model 1 Shape Completions 
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Shape Model 2 

  In this generative model, shape vectors are assumed to 
be samples from a general multivariate normal 
distribution.  There is only one parameter, the 
covariance matrix, but this represents D(D+1)/2 
degrees of freedom (i.e., scalar unknowns). 

  Functions: 
  ShapeModel2ML.m - computes maximum likelihood estimate 

of the parameters 
  ShapeModel2Sample.m - generates and displays random 

samples from the model 
  ShapeModel2Complete.m - estimates missing portion of a 

given shape  
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Shape Model 2 Samples 
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Shape Model 2 Completions 
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Shape Model 3 

  This model is not generative:  it simply uses linear 
interpolation to estimate the missing points. 

  Functions: 
 ShapeModel3Complete.m - estimates missing portion of 

a given shape 
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Shape Model 3 Completions 
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Evaluation on Shape Completion 
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Credits 

  Some of these slides were sourced and/or modified 
from Christopher Bishop, Microsoft UK 
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Outline 

  Maximum Likelihood Regression 
  Regularized Regression 
  Bayesian Regression 
  Prediction 
  Kernel Regression 
  Bayesian Model Comparison 
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Linear Basis Function Models (1) 

  Example: Polynomial Curve Fitting 
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Linear Basis Function Models (2) 

  Generally 

  where ϕj(x) are known as basis functions. 
  Typically, Φ0(x) = 1, so that w0 acts as a bias. 
  In the simplest case, we use linear basis functions : 
Φd(x) = xd. 
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Linear Basis Function Models (3) 

  Polynomial basis 
functions: 

 These are global 
  a small change in x 
affects all basis functions. 
  A small change in a 
basis function affects y 
for all x. 
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Linear Basis Function Models (4) 

  Gaussian basis functions: 

 These are local: 
  a small change in x affects 
only nearby basis functions.  
  a change in a basis function 
affects y only for nearby x. 
 μj and s control location 
and scale (width). 
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Linear Basis Function Models (5) 

  Sigmoidal basis functions: 

  where 

  Also local:  
  a small change in x affects 
only nearby basis functions.  
  a change in a basis function 
affects y only for nearby x. 
 μj and s control location and 
scale (slope). 
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Maximum Likelihood and Least Squares  

  Assume observations from a deterministic function with 
added Gaussian noise: 

  which is the same as saying, 

  Given observed inputs,                            , and 
targets,                     we obtain the likelihood 
function   

where 
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Maximum Likelihood and Least Squares  

  Taking the logarithm, we get 

  where 

  is the sum-of-squares error. 
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  Computing the gradient and setting it to zero yields 

  Solving for w, we get  

  where 

Maximum Likelihood and Least Squares 

The Moore-Penrose 
pseudo-inverse,       . 
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Maximum Likelihood and Least Squares  

  Maximizing with respect to the bias, w0, alone, we 
see that 

  We can also maximize with respect to β, giving 
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Geometry of Least Squares 

  Consider 

  S is spanned 
by                    . 

  wML minimizes the distance 
between t and y by making y the 
orthogonal projection of t onto S 

N-dimensional 
M-dimensional 
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Sequential Learning 

  Data items considered one at a time (a.k.a. online 
learning);  use stochastic (sequential) gradient 
descent: 

  This is known as the least-mean-squares (LMS) 
algorithm. Issue: how to choose η? (We will not 
cover this.) 
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Assignment 1 Lab 

  Wed Nov 3, 2:30-5:30 (pm!) 
  Bring your laptops! 



Linear Regression 

J. Elder CSE 6390/PSYC 6225 Computational Modeling of  Visual Perception 

32 

Regularized Least Squares (1) 

  Consider the error function: 

  With the sum-of-squares error function and a 
quadratic regularizer, we get   

  which is minimized by 

Data term + Regularization term 

λ is called the 
regularization 
coefficient. 
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Regularized Least Squares (2) 

  With a more general regularizer, we have 

Lasso Quadratic 
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Regularized Least Squares (3) 

  Lasso generates sparse solutions.  
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Multiple Outputs (1) 

  Analogous to the single output case we have: 

  Given observed inputs                            , and 
targets 
 we obtain the log likelihood function 
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Multiple Outputs (2) 

  Maximizing with respect to W, we obtain 

  If we consider a single target variable, tk, we see that 

  where                           , which is identical with the 
single output case. 
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Bayesian Linear Regression (1) 

  Define a conjugate prior over w 

 Combining this with the likelihood function and using  
results for marginal and conditional Gaussian 
distributions, gives the posterior  

  where  
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Bayesian Linear Regression (2) 

  A common choice for the prior is  

 for which 

 Next we consider an example … 
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Bayesian Linear Regression (3) 

0 data points observed 

Prior Data Space 
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Bayesian Linear Regression (4) 

1 data point observed 

Likelihood Posterior Data Space 
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Bayesian Linear Regression (5) 

2 data points observed 

Likelihood Posterior Data Space 
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Bayesian Linear Regression (6) 

20 data points observed 

Likelihood Posterior Data Space 
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Predictive Distribution (1) 

  Predict t for new values of x by integrating over w: 

  where 
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Predictive Distribution (2) 

  Example: Sinusoidal data, 9 Gaussian basis functions, 
1 data point 

  Samples of y(x,w)   E t | t,α,β⎡⎣ ⎤⎦    p t | t,α,β( )
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Predictive Distribution (3) 

  Example: Sinusoidal data, 9 Gaussian basis functions, 
2 data points 

  Samples of y(x,w)   E t | t,α,β⎡⎣ ⎤⎦    p t | t,α,β( )
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Predictive Distribution (4) 

  Example: Sinusoidal data, 9 Gaussian basis functions, 
4 data points 

   E t | t,α,β⎡⎣ ⎤⎦    p t | t,α,β( )   Samples of y(x,w)
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Predictive Distribution (5) 

  Example: Sinusoidal data, 9 Gaussian basis functions, 
25 data points 

  Samples of y(x,w)   E t | t,α,β⎡⎣ ⎤⎦    p t | t,α,β( )
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Equivalent Kernel (1) 

  The predictive mean can be written 

  This is a weighted sum of the training data target 
values, tn. 

Equivalent kernel or 
smoother matrix. 
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Equivalent Kernel (2) 

Weight of tn depends on distance between x and xn; 
nearby xn carry more weight. 

For Gaussian basis  x
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Equivalent Kernel (3) 

  Non-local basis functions have local equivalent 
kernels: 

Polynomial Sigmoidal 
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Equivalent Kernel (4) 

  The kernel as a covariance function: consider 

  We can avoid the use of basis functions and define 
the kernel function directly, leading to  Gaussian 
Processes (Chapter 6). 
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Equivalent Kernel (5) 

 for all values of x; however, the equivalent kernel may 
be negative for some values of x. 

 Like all kernel functions, the equivalent kernel can be 
expressed as an inner product: 

 where                                  . 
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Bayesian Model Comparison (1) 

  How do we choose the ‘right’ model? 
  Assume we want to compare models Mi, i=1, …,L, 

using data D; this requires computing 

  Bayes Factor: ratio of evidence for two models 

Posterior Prior Model evidence or 
marginal likelihood 
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Bayesian Model Comparison (2) 

  Having computed p(Mi|D), we can compute the 
predictive (mixture) distribution 

  A simpler approximation, known as model selection, 
is to use the model with the highest evidence. 
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Bayesian Model Comparison (3) 

  For a model with parameters w, we get the model 
evidence by marginalizing over w 

  Note that  
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Bayesian Model Comparison (4) 

 For a given model 
with a single 
parameter, w, consider 
the approximation 

 where the posterior is 
assumed to be sharply 
peaked.  
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Bayesian Model Comparison (5) 

  Taking logarithms, we obtain 

  With M parameters, all assumed to have the same 
ratio                                   , we get 

Negative 

Negative and linear in M. 
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Bayesian Model Comparison (6) 

  Matching data and model complexity 
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Limitations of Fixed Basis Functions 

•  M basis function along each dimension of a D-
dimensional input space requires MD basis functions: 
the curse of dimensionality. 

•  In later chapters, we shall see how we can get away 
with fewer basis functions, by choosing these using 
the training data. 


